高考复习 > 高考数学

2021年数学高考诱导公式合集

发布时间:2020年12月01日 16:37
高考是一个是一场千军万马过独木桥的战役。面对高考,考生总是有很多困惑,什么时候开始报名?高考体检对报考专业有什么影响?什么时候填报志愿?怎么填报志愿?等等,为了帮助考生解惑,大学路整理了2021年数学高考诱导公式合集相关信息,供考生参考,一起来看一下吧

大学路圆梦网小编推荐:2021年数学高考诱导公式合集

数学高考很难怎么办,数学高考复习怎么在短期内提升成绩?

2021年高考语文作文精彩结尾精选

2021年北京高考英语听说考试安排

  常用的诱导公式有以下几组:

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα (k∈Z)

  cos(2kπ+α)=cosα (k∈Z)

  tan(2kπ+α)=tanα (k∈Z)

  cot(2kπ+α)=cotα (k∈Z)

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α与 -α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  注意:在做题时,将a看成锐角来做会比较好做。

  诱导公式记忆口诀

  ※规律总结※

  上面这些诱导公式可以概括为:

  对于π/2*k ±α(k∈Z)的三角函数值,

  ①当k是偶数时,得到α的同名函数值,即函数名不改变;

  ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

  (奇变偶不变)

  然后在前面加上把α看成锐角时原函数值的符号。

  (符号看象限)

  例如:

  sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

  当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

  所以sin(2π-α)=-sinα

  上述的记忆口诀是:

  奇变偶不变,符号看象限。

  公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

  所在象限的原三角函数值的符号可记忆

  水平诱导名不变;符号看象限。

  #

  各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

  这十二字口诀的意思就是说:

  第一象限内任何一个角的四种三角函数值都是“+”;

  第二象限内只有正弦是“+”,其余全部是“-”;

  第三象限内切函数是“+”,弦函数是“-”;

  第四象限内只有余弦是“+”,其余全部是“-”.

  上述记忆口诀,一全正,二正弦,三内切,四余弦

  #

  还有一种按照函数类型分象限定正负:

  函数类型 第一象限 第二象限 第三象限 第四象限

  正弦 ...........+............+............—............—........

  余弦 ...........+............—............—............+........

  正切 ...........+............—............+............—........

  余切 ...........+............—............+............—........

  同角三角函数基本关系

  同角三角函数的基本关系式

  倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的关系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方关系:

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函数关系六角形记忆法

  六角形记忆法:(参看图片或参考资料链接)

  构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

  (1)倒数关系:对角线上两个函数互为倒数;

  (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

  (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

  (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

  两角和差公式

  两角和与差的三角函数公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  二倍角公式

  二倍角的正弦、余弦和正切公式(升幂缩角公式)

  sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan2α=2tanα/[1-tan^2(α)]

  半角公式

  半角的正弦、余弦和正切公式(降幂扩角公式)

  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

  万能公式

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  万能公式推导

  附推导:

  sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,

  (因为cos^2(α)+sin^2(α)=1)

  再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

  然后用α/2代替α即可。

  同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

  三倍角公式

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

  三倍角公式推导

  附推导:

  tan3α=sin3α/cos3α

  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

  上下同除以cos^3(α),得:

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

  =2sinαcos^2(α)+(1-2sin^2(α))sinα

  =2sinα-2sin^3(α)+sinα-2sin^3(α)

  =3sinα-4sin^3(α)

  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

  =(2cos^2(α)-1)cosα-2cosαsin^2(α)

  =2cos^3(α)-cosα+(2cosα-2cos^3(α))

  =4cos^3(α)-3cosα

  即

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  三倍角公式联想记忆

  ★记忆方法:谐音、联想

  正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

  余弦三倍角:4元3角 减 3元(减完之后还有“余”)

  ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

  ★另外的记忆方法:

  正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方

  余弦三倍角: 司令无山 与上同理

  和差化积公式

  三角函数的和差化积公式

  sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  积化和差公式

  三角函数的积化和差公式

  sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

  cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

  cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

  sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

  和差化积公式推导

  附推导:

  首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

  我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

  所以,sina*cosb=(sin(a+b)+sin(a-b))/2

  同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

  同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

  所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

  所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

  同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

  这样,我们就得到了积化和差的四个公式:

  sina*cosb=(sin(a+b)+sin(a-b))/2

  cosa*sinb=(sin(a+b)-sin(a-b))/2

  cosa*cosb=(cos(a+b)+cos(a-b))/2

  sina*sinb=-(cos(a+b)-cos(a-b))/2

  有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。

  我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

  把a,b分别用x,y表示就可以得到和差化积的四个公式:

  sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

  sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

  cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

  cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

以上就是大学路为大家带来的2021年数学高考诱导公式合集,希望能帮助到广大考生!
免责声明:文章内容来自网络,如有侵权请及时联系删除。

95%的人继续看了

2021年新高三历史该如何复习?

2021年新高三历史该如何复习?

大学路圆梦网小编推荐:2020年新高三地理该如何复习?如何做好高三第一轮复习准高三进入复习状态有哪些事情是必须要做的?怎样调整高考备考心态?一、高中历史核心素养的内容在系统复习之前,要先明确高中历史学科

2021年新高三生物该如何复习?

2021年新高三生物该如何复习?

大学路圆梦网小编推荐:2021年新高三历史该如何复习?2020年新高三地理该如何复习?一、巩固居家学习的知识。2020年我们都经历了一个漫长而特殊的寒假,因为新冠疫情,大家在家进行网上学习。线上学习的效果因人而

2021年新高三政治该如何复习?

2021年新高三政治该如何复习?

大学路圆梦网小编推荐:2021年新高三生物该如何复习?高三一轮物理复习中常采用的教学方法准高三进入复习状态有哪些事情是必须要做的?怎样调整高考备考心态?政治考试题虽然会有些许变化,但始终注重基础知识。新

2021年新高三物理该如何复习?

2021年新高三物理该如何复习?

大学路圆梦网小编推荐:2021年新高三政治该如何复习?2021年新高三生物该如何复习?一、夯实基础,全面准确地理解基本概念和基本规律基于物理应用性、推理性强的学科特点,同学们复习物理要建立在理解的基础上。以

2021年高中物理怎么辅导才更有效?

2021年高中物理怎么辅导才更有效?

大学路圆梦网小编推荐:物理辅导班,高中物理辅导班高中物理辅导书,高中物理用什么教辅好高三物理辅导,高三物理辅导班哪家好很多孩子在高中时,突然觉得物理越来越难,知识点都了解,就是不会做题,这让家长也很

2021年高三政治要怎么复习?

2021年高三政治要怎么复习?

大学路圆梦网小编推荐:如何做好高三第一轮复习高三一轮物理复习中常采用的教学方法准高三进入复习状态有哪些事情是必须要做的?怎样调整高考备考心态?高三的复习大致要经历三个阶段,每个阶段有不同的任务、不同

2021年语文自即日起什么意思?自即日起是病句吗?

2021年语文自即日起什么意思?自即日起是病句吗?

大学路圆梦网小编推荐:北京高考网上报名系统使用问答山西2021年关于普通高考补报名的公告浙江今天起2021高考报名网上确认自即日起是什么意思?即日,意思一是当天,当日;二是近几天之内。出自明冯梦龙《东周列国志

2021年语文高考怎么判断句式杂糅?

2021年语文高考怎么判断句式杂糅?

大学路圆梦网小编推荐:2021年语文自即日起什么意思?自即日起是病句吗?2020年湖北高考语文卷难不难,今年湖北高考语文卷难度系数点评2020年天津高考语文卷难不难,今年天津高考语文卷难度系数点评1、句式杂糅句式杂

2021年英语高考want to可以怎么造句?

2021年英语高考want to可以怎么造句?

大学路圆梦网小编推荐:2021年语文高考怎么判断句式杂糅?2021江苏高考文化总成绩如何组成?2021年重庆新高考将采用“3+1+2”模式用wantto组词wanttodosth,想要做某事。wantsbtodosth,想要某人做某事。likedoing

2021年高考如何提高历史成绩?

2021年高考如何提高历史成绩?

大学路圆梦网小编推荐:2021年新高三历史该如何复习?高中历史该怎么才能学好?高中历史成绩不好怎么办?怎么学高中历史才好?高中的历史比较难,在考试的时候,历史成绩总是拉分,那么如何提高高考历史成绩呢?如

其他人推荐看